martes, 20 de octubre de 2015

Adición y sustracción de vectores en R3

¿Qué es adición de vectores en R3?

Es la suma de vectores en R3. Se realiza de la siguiente manera: Se suman las coordenadas del vector 1 con las coordenadas con del vector 2. Puedo representar un ejemplo de la siguiente manera:

Vector 1 = (X1, Y1, Z1) + Vector 2 = (X2, Y2, Z2) Y eso queda de la siguiente manera:

V =  (X1+X2, Y1+Y2, Z1+Z2)


¿Como se representa geométricamente el vector suma en R3?

La manera más sencilla de graficar un vector suma en R3 que encontré es la siguiente: Se debe trasladar el segundo vector de manera tal que el origen del mismo, coincida con el extremo del primer vector, y la suma la obtendremos dibujando un vector que vaya desde el origen del primer vector hasta el extremo del segundo vector, acá dejo una imagen para que se vea mejor:



¿Qué es sustracción de vectores en R3 y como se realiza? 

La sustracción de vectores en R3 es cuando se restan los vectores, se realiza de la siguiente manera: 

Vector 1 = (X1,Y1,Z1) - Vector 2 = (X2,Y2,Z2)

V = (X1 - X2, Y1 - Y2, Z1 - Z2) 

¿Como se representa geométricamente el vector sustracción  en R3? 

Hay que tener muy presente lo siguiente: Vectores en la misma dirección se suman (Como se ve en la imagen en la parte de suma de vectores, pero vectores con sentidos opuestos se restan)

Aquí las imágenes que explican lo descrito: 



"S" Significa suma y "R" Resta.

Tutorial: 

Sumas y restas de Vectores - Harold Alvarez







jueves, 1 de octubre de 2015

Vectores en R3

1. ¿Qué significa R3?

Que las coordenadas son tridimensionales, es decir, que ya no son solo los dos ejes de coordenadas que conocíamos (X,Y) Ahora hay un tercero que es el eje (Z)  

2. ¿Qué son vectores? 

Un vector, en matemáticas, es la cantidad que tiene un modulo, una dirección y un sentido al mismo tiempo. 


3. ¿Qué son vectores en R3?

Un vector en el espacio es cualquier segmento orientado que tiene su origen en un punto y su extremo en el otro.

También puede decirse que un vector es un segmento de recta dirigido que se denota de la siguiente manera: V = (X,Y,Z)

4. ¿Cuales son los elementos de un vector?

Los elementos de un vector son los siguientes: Dirección, sentido y módulo.

La dirección del vector se entiende como la dirección de la recta que contiene el vector o de cualquier recta paralela a ella.

El sentido del vector es el que va desde el origen que podemos representar con (A) al extremo, que podemos representar con (B) O que va desde el punto inicial al punto final.

El módulo del vector, es la distancia que el mismo recorre.

5. ¿Como se grafica en R3 y cuales son sus octantes?

Se realiza un plano con 3 ejes cartesianos y al tener las 3 coordenadas se gráfica en cada uno de los ejes, como lo indiquen los mismos. El punto de la gráfica donde se encuentren las 3 coordenadas, es el vector.

Los Octantes con sus respectivos signos son los siguientes:

1 + + + 
2 - + + 
3 - - + 
4 + - + 
5 + + - 
6 - + - 
7 - - - 
8 + - - 

6. Según tus propias palabras, ¿Donde se utilizan los vectores en R3?

Todo el espacio donde vivimos es tridimensional, todo tiene una altura, un ancho y una profundidad y para el estudio matemático respectivo del espacio donde vivimos.

7. Realiza un resumen de lo investigado anteriormente.

Después de haber realizado esta investigación he podido darme cuenta que los vectores en R3 es un contenido un poco complejo pero a la vez muy interesante, pasamos de tener un plano cartesiano con dos ejes o dos dimensiones (X,Y) a tener uno que es tridimensional, es decir, con tres ejes (X,Y,Z) Aparte de esto también pude conocer, o mejor dicho, recordar un conocimiento, al ver cada uno de los elementos de los vectores, que son los mismos, sea en R2 o en R3, dichos elementos son: Dirección, sentido y modulo. Por último pero no menos importante logre adquirir el aprendizaje de que lo vectores en R3 nos ayudan a representar el espacio que nos rodea de manera matemática.